
Working on remote
machines

fjord (or whatever remote linux
machine you got an account on)
• You should all have gotten accounts on fjord
from David Darr.
• To login to your account from the linux prompt
on your home computer use "ssh" (secure shell)
• ssh [username]@fjord.ocean.washington.edu
• and it will ask for your password. Now, even
though you are in the same terminal window your
commands are being carried out in a room inside
OSB! All the same linux-bash commands should
work basically the same as on your laptop.

fjord, cont.

• There are many disks and folders and users on
fjord, but you only have permission to do things
(like create or delete files) in two places:
• /home/[username] is where you keep environment
stuff like the .bashrc where you set aliases and
default paths (like where to find ipython). This
location has very little space, so don't do ANY
work there except for editing your .bashrc.
• /data1/effcom/[username] is a much bigger disk,
with many TB of space. You can use this for
working with files and code for this class.

Essentials: ssh, scp
• "ssh" is how you log on. Type "logout" to get off fjord and back
to your machine. One of the tricky things about working across
machines is remembering where you are currently. Make a note for
yourself on how the prompt changes between the two machines.

• To move a file from your computer to fjord, you can use a file
transfer program like Transmit or WinSCP. Often it can be
comforting to have the usual graphical folders and files that you
click and drag. But you can also do it from the command line
using "scp".

• Working from your home terminal, find a small file to copy, and
navigate to the directory where it is, then try:

• scp [filename] [username]@fjord.ocean.washington.edu:/data1/effcom/[username]

• And then check to see if it got there. If you had used
.../[username]/[newfilename] it would have renamed the file in the
process.

• You can transfer lots of files this way by using wildcards.
• During the transfer it will tell you how fast it is going. What
is your typical "upload" speed? I get around 10-100 MB/sec
downloads and 3 MB/sec uploads at home.

Disk Usage: df
• ALWAYS be aware of how much disk space you are using and how
much is available. If you fill up /data1 no one else will
be able to use it. L

• "df -h" gives you info on how much disk space is available
on all disks mounted on the computer. Here is what fjord
currently looks like:
Filesystem Size Used Avail Use% Mounted on
/dev/sda3 96G 78G 14G 86% /
tmpfs 32G 0 32G 0% /dev/shm
/dev/sda1 477M 153M 300M 34% /boot
/dev/sdb1 22T 16T 6.0T 73% /data1
gaggle:/pmr3 30T 14T 16T 47% /pmr3
gaggle:/pmr4 30T 21T 8.9T 70% /pmr4
boiler:/data1 73T 41T 32T 57% /boildat1
perigee:/data1 146T 116T 30T 80% /pgdat1
gaggle:/pmr2 33T 19T 15T 57% /pmr2

• So /data1 has 6 TB available and is 73% full.

Disk Usage: du

• To find out how much diskspace you are using in
various folders use "du -sh *". The "s" means it
gives a summary of the size of each folder, not
each file, and as before "h" means human-readable.
It gives info specific to all (*) the files and
folders at your current location, not everywhere,
so it is the tool to use for your own
housekeeping.

[parker@fjord output]$ du -sh *
5.0T cas6_v3_lo8b
4.7T cas6_v3_lo8da
1.2T sj0_v0_lo8nest
255G WCOFS_avg_Exp37
120G wcofs_avg_now

Job Control: &, CTRL-z, bg
• A really common problem when working on a remote machine is that you start
some long calculation and then are stuck having to keep the connection
open. You don't have to do this – linux is designed to keep working, even
on multiple jobs, after you logoff.

• Here is a nice way to run remote jobs, working from the remote machine:
• python [my_program].py > log.txt &
• Here I run a python program, redirect (>) the screen output – like my
print statements – to a file called log.txt, and then (&) "escape to
shell". When you start a program this way it will return you to the
command line prompt and tell you the Process ID (PID) number. Then you
can safely logoff and come back later.

• If you start a big job but forget the "&" no worries. Just type CTRL-z
(meaning hold down the control key and at the same time hit z) to suspend
the job, and then "bg" to send the job to the background. Try it out so
you feel comfortable with it. The command “fg” brings the job back to the
foreground. A simple python test program could just be something like:
import time
print('starting')
time.sleep(10) # sleep for 10 seconds
print('done')

Job Control: top, kill

• "top -u [username]" will bring up a screen of
all your running processes, including the PID
of each one. The various columns can be hard
to understand (for me) but it does allow me to
see what jobs are running.
• Type “q” to get out of top.
• "kill [PID]" will terminate any of your jobs.
Don't worry – you can't mess up things being
run by other users.

Editing text files

• To edit a text file remotely you can't use the
same graphical text editor you use to write code
on your personal machine. In fact it is such a
pain to edit code remotely I recommend that you do
ALL your coding on your personal computer, and
then use git (best) or scp to put it on the remote
machine. Next week we'll talk through strategies
for organizing your code to streamline this
process.
• To edit files on remote machines the standard
workhorse is "vi" (or "nano") which you invoke
from the command line like:
• vi [filename]

vi commands 1

• start editing
• vi filename

• save changes and quit (:q! to quit without saving changes)
• :wq

• insert before cursor, on cursor, or after cursor. You HAVE
to use one of these before you can start typing.
• i, s, a

• escape from insert mode
• ESC

• add new line below or above (these also allow you to start
typing)
• o, O

• delete 2 lines
• 2dd

vi commands 2

• from line 1 to end of file ($), substitute (s),
all instances on line (g)
• :1,$s/old_pattern/new_patern/g

• from this line (.) and following 4 lines (.+4),
substitute (s), all instances on line (g)
• :.,.+4s/old_pattern/new_patern/g

• to include "/" in a pattern use \/
• yank one line into buffer a

• "a1yy
• insert buffer a below cursor

• "ap

vi commands 3

• see line numbers (nonu to remove)
• :set nu

• see hidden characters (nolist to hide)
• :set list

• get rid of highlights (caused by shift 3)
• :noh

Exercise

• Use vi to create a short text file, with a few
lines of text. Close the file (:wq)
• Edit the file using vi to add a new line of
text (o) and delete another (dd).
• Edit your .bashrc on fjord to include an alias
that gets you to your directory in /data1.
Don't worry – we can always fix it if needed.
• Anytime you get lost just hit the Escape key
and then type :q! to exit vi without saving
changes.

cron

• The last linux tool I find really useful is
"cron" which allows you to schedule a job to
happen at a certain time, say every day at 1
AM.
• "crontab -e" will allow you to begin editing
the list of jobs. You use vi commands to do
this.
• "crontab -l" will list your current cron jobs.

cron example
• Here are the current cron jobs for my daily forecast
model:

[parker@boiler ~]$ crontab -l

LOd="/data1/parker/LiveOcean/driver/"
10 00 * * * cd $LOd && ./driver_forcing2.sh -g cas6 -t v3 -f ocn4 -r forecast > ./dlog_638_ocn4

20 00 * * * cd $LOd && ./driver_forcing2.sh -g cas6 -t v3 -f tide2 -r forecast > ./dlog_638_tide2

30 00 * * * cd $LOd && ./driver_forcing2.sh -g cas6 -t v3 -f riv2 -r forecast > ./dlog_638_riv2
30 02 * * * cd $LOd && ./driver_forcing2.sh -g cas6 -t v3 -f atm1 -r forecast > ./dlog_638_atm1

00 05 * * * cd $LOd && ./driver_post.sh -g cas6 -t v3 -x lo8b -r forecast > ./dlog_638_driver_post
00 20 * * * cd $LOd && ./forecast_cleaner.sh

• So for example at 2:30 AM (oddly written as 30 02 * *
*) I run the shell script to make the atmospheric
forcing for the model.
• Creating your own cron jobs just consists of creating a
text file (using crontab -e) with lines like these.
• Here is a very short cron cheatsheet:

• https://devhints.io/cron

https://devhints.io/cron

